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NOTATION

d  = diameter of pole (average)p

w = uniform load on beam

w  = wind load on polep

GLM = Ground Line Moment

H  = Span of Davit Arm 11

H  = Span of Davit Arm 22

L = Length of the Member 

L , L , L  = Distances from Ground to wire attachment points1 2 3

L  = Pole Height above groundAG

M = Bending Moment of beam

P = Point Load at end of beam

T  = Transverse Load - Shield Wires

V  = Vertical Load- Shield Wires

T  = Transverse Load - Conductorc

V  = Vertical Load - Conductorc
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Abstract

This paper presents a novel and effective technique 

based on Artificial Neural Net (ANN) technology to 

reverse map from process response to the input 

(control) variables when the input-response 

relationships are nonlinear, complex or intractable by 

theory. This is often the problem when the control 

variables in manufacturing or prototype development 

must be set such that the response hits a specified 

target. The ANN technique avoids countless empirical 

searches in the decision space and thus minimizes the 

expenditure on R&D or production resources. 

Additionally, this paper illustrates how one may build 

an ANN model with top-flight performance in 

Microsoft Excel® when a commercial neural net 

software is unavailable. The paper includes a learning-

oriented reworking of a well-established example from 

the response surface literature. In conclusion, it 

indicates room for further research on training data 

collection methods.

Keywords: Process modelling, Artificial neural 

networks, Connection weights, Optimization, Reverse 

mapping, Regression

NMIMS Engineering and Technology Review
Volume I  Issue 2    June 2019 | |

1716



1.  Process Optimization using Empirical 

methods

This paper could be retitled, for it asks “I have a process 

response ('the answer') that is now sitting at its desired 

target value. But how did the engineer reach it? What 

settings of the design or process control variables did 

she use ('the question') to deliver the response on that 

target?” One must note that this is often a critical 

question in engineering design and process control.

Frequently, we run into situations where we wish to 

control a phenomenon that is observed as a response, 

and we have speculations about what factors might be 

causing it. It is often intended that we deliberately 

avoid the issue of establishing such causality. We 

assume that this has already been done by suitable 

experimentation (Montgomery, 2007; Bagchi, 2012; 

Gershenson, 2018). The goal presently is to drive the 

response to some desired target—by manipulating the 

enlisted causes or predictors. For this discussion, we 

assume that both - the set of predictors and the 

response - are all quantitative and measurable. This is 

the premise of Chapters 10 and 11, Fitting Regression 

Models (Montgomery, 2007)—premises which we 

unconditionally adopt. 

Montgomery marshals  the s i tuat ion where 

optimization or process control is the focus. He 

explores settings when the true functional or 

dependency relationship between (a) y—the 

response—and (b) the predictors x , x , ...x  is 1 2 k

unknown. Montgomery subsequently expounds the 

machinery required to develop an empirical model 

relating the two, under some assumptions that make 

the approach discussed statistically valid. The data 

required to track such relationships may come from 

well-planned statistical experiments, or from 

unplanned experiments involving the observation of 

uncontrolled phenomena. The model proposed hinges 

on the hypothesized relationship between y and {xi}, 

assuming it to be a linear function of unknown model 

parameters β , β , β , … β . With k regressor 0 1 2 k

The terms “x ”, “x ”, etc. need not be the predictors 1 2

directly; in general, these can be even nonlinear 
2functions of {x }, such as x x , log(x ), etc. Thus, this i 2 3 4

model allows the response y to be nonlinear functions 

of the regressors. But the model remains strictly linear 

with respect to the model parameters or regression 

coefficients {β }. This gives the name linear regression i

to this approach of empirical model building from the 

{x , y} data.  i

Montgomery next presents an estimation of 

parameters and their statistical significance. A key 

aspect of regression modelling is hypothesis testing, 

which, when incorporated, allows one to use even 

randomly collected “input – response” data and to test 

statistically if the regressor-response dependency 

hypothesized as in model (1) is wholly or partially 

acceptable. In Chapter 11, Montgomery discusses a 

subsequent issue: the use of the “response model” 

thus developed to optimize the response. An example 

that we evoke (without its associated elaboration) 

from Montgomery is one in which reaction time (time) 

and reaction temperature (temp) are to be 

manipulated so as to maximize the yield of a certain 

process (Example 11-2, Montgomery, 2007).  The data 

was collected by following a Central Composite 

Experimental Design (CCD), partially reproduced in 

Table 1. 

The final regression model that Montgomery obtained 

is 

We refer to Montgomery (2007) which expands the 

explanations and the procedure to obtain model (2).
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y = β  + β  x  + β  x  + … β  x0 1 1 2 2 k k (1)

yield = - 1430.52285 + 7.80749 time + 
213.27053 temp – 0.055050 time  – 

20.040050 temp  + 0.010000 time temp

(2)

(independent or predictor) variables, the “response” 

model takes the form

Model (2) is a second order equation and it would be 

quite possible using standard methods now to 

optimize the process being studied. The goal would 

likely be to find the optimum time and temperature 

settings to maximize yield.  Such exercises are 
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numerous. In industrial processes in many domains 

where theory is unavailable or not sufficiently 

advanced, such empirical optimization is standard 

practice.

Table 1: Experimental data of Montgomery's CCD example*

Experiment #

Natural variables CCD Coded variables Observed response

Reaction
Time

Reaction
Temperature

X1 X2 Y (yield)

 1 80 170 -1 -1 76.5

 2 80 180 -1 1 77

 3 90 170 1 -1 78

 4 90 180 1 1 79.5

 5 85 175 0 0 79.9

 6 85 175 0 0 80.3

 7 85 175 0 0 80

 8 85 175 0 0 79.7

 9 85 175 0 0 79.8

 10 92.07 175 1.414 0 78.4

 11 77.93 175 -1.414 0 75.6

 12 85 182.07 0 1.414 78.5

 13 85 167.93 0 -1.414 77

* Example 11-2, Montgomery (2007), page 441

Suppose we reverse the question now. If we are given a 

target yield, can we trace back to the corresponding 

values used for the input variables?  This is sometimes 

possible. Model (2) may allow us to develop contour 

plots or response surfaces when the number of 

independent process variables is small. This can thus 

localize the search for optimization. However, if this 

number is large or the dependency relationship is 

complex, this reverse mapping from a desired target 

response to the input variables would be infeasible. It 

might entail solving constrained equations that are 

intractable in reverse (Bagchi 2012). Luckily recent 

innovations can greatly help here. A similar situation 

with injection moulding is described by Manjunath, P 

G C and P Krishna (2012). This present study illustrates 

one such effective approach based on a trained 

Artificial Neural Network (ANN). Our focus here would 

be to test the effectiveness of a trained ANN to achieve 

such reverse response-to-input mapping.

2.  Artificial Neural Networks (ANN)

Ingenious emulation (modelling) of the human mind 

by computer scientists have led to several types of 

constructs and intelligent behaviour of computer 

programs and such artefacts that, except spontaneous 

thinking, nervous systems in living organisms regularly 

carry out. These artefacts—called Artificial Neural 

Nets (ANN)—given some hardware and logic, can 

sense, process, learn and activate internal and external 

actions. Intelligence is one's ability to acquire and 

apply knowledge and skills. Wikipedia expands this 

statement as one's capacity for logic, understanding, 

self-awareness, learning, emotional knowledge, 

planning, creativity, and problem-solving. Not all of 

this is entirely possible yet for machines. Still, a lot is 

now possible where smart (not just automatic) actions 

can be expected of machines without human 

intervention. This section tackles an effort-intensive 

problem from the manufacturing world and shows 
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2.1  ANN—why study them?

Advanced manufacturing technologies such as EDM 

(Electrical Discharge Machining), CNC (Computer 

Numerical Control) and robotics in mechanical 

industries have made it possible for us to produce top-

class products, often in a shorter time and at a lower 

cost—but the production processes are now more 

complex. The same challenge exists in fabricating VLSI 

(Very Large-Scale-Integration) or memory chips, 

processing pharmaceuticals, or in alloy steel 

production. Frequently we wish to optimize such 

processes; however, traditional analytical methods 

aren't always suitable to manipulate or model intricate 

manufacturing processes—to help control or improve 

them. Process variables today are many and the 

relationships in the problem may be nonlinear. 

Textbook theory also often reaches its limit and one 

then resorts to empirical approaches, the notable 

exception being electrical and electronic sciences. 

Artificial neural networks sometimes provide an 

effective way in such cases and a number of its 

successful implementations have been seen in the 

past two decades. Deep learning, a sophisticated 

empirical modelling and decision making approach, is 

an advanced form of the ANN technology to help 

recognize faces, script, and voice, and we may not be 

aware, but banks now regularly sift each of our credit 

card transactions through neural nets to check fraud.

Figure 1:  A natural neuron showing its body (soma), dendrites that connect it to other neurons and axon which 

carries the activation signal to muscles

with a completely worked out example of how the task 

can be effectively delegated to a trained intelligent 

machine, here a neural net. Artificial neural networks 

have been shown to be able to reproduce the 

behaviour of complex and nonlinear relationships 

between a set of input factors and another set of 

dependent responses to an arbitrary degree of 

closeness, often much better than classical 

dependency modelling methods (Hornik, Tinchdombe 

and White, 1989). We briefly recall the basics of ANN's 

design, training and use in a situation that would 

otherwise require in-depth engineering and 

computational exercise and sometimes intractable 

analysis—every time a new production technology is 

to be evaluated for its utility, for example. We also 

describe the steps in doing this in embedded technical 

notes. One special facility we extend to the reader:  In 

order to keep mysterious "black boxes" doing the 

needed computations behind the scene at the 

minimum, we do all our work using Microsoft Excel®. 

To aid the learner, we purposely show here the steps to 

build simple yet very effective ANNs in Microsoft 

Excel®. See also  and Choong (2009) Kendrick, Mercado 

and Amman (2006).
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Figure 2: The Input-Hidden nodes-Output Architecture of a typical ANN

Ostensibly, this is an area that may have a high 

potential to help optimize or improve many complex 

manufacturing processes also. To set the stage, this 

paper outlines the steps in building ANN models in 

general and a production system example for 

illustration, in particular, to replace or simplify much of 

that slog. For the uninitiated, we include discussions 

on ANN architecture, training the selected net, testing 

it, and then using it for prediction of the production 

system's performance. The goal would be to raise the 

system's productivity, the quality of its output, or cut 

unit cost, etc. 

The human brain learns, remembers, decides and 

activates the right muscles or organs to let us live. It has 

approx imate ly  100  b i l l ion  neurons ,  wh ich 

communicate through electro-chemical signals. The 

neurons are connected through junctions called 

synapses. Each neuron receives thousands of 

connections with other neurons, constantly receiving 

incoming signals to reach the cell body (Figure 1). If the 

resulting sum of the signals surpasses a certain 

threshold, a response is sent through the axon. The 

ANN attempts to recreate the computational mirror of 

the biological neural network, although it is not 

comparable since the number and complexity of 

neurons and the connections used in a biological 

neural network is significantly greater than those in an 

ANN. Good introductions to ANN are given by 

Gershenson (2018) and Tutorials Point (2018).

Character and image recognition and natural language 

processing are two areas in which ANN has made 

unbelievable strides already. Both use a new approach 

called Deep Learning. ANN now automatically 

translates English into Greek and guides physicians in 

diagnostics. Manufacturing system design, scheduling, 

interpreting non-random behaviour of a process, 

substitution for complex statistical experiments and 

needless runs of simulation models to discover 

optimum process conditions are instances where 

perhaps our own intelligence and ingenuity to exploit 

ANN has become wanting. Like many other similar 

tools and artefacts, ANN empowers analytics. Thus, 

ANN is rapidly knocking out and moving ahead of 

conventional problem-solving.

2120
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2.2  How does learning occur? 

Figure 2 indicates the flow of information in the ANN. 

The input nodes take in information in a form which 

can be numerically expressed. The information is 

presented as activation values, where each node is 

given a number; the higher the number, the greater 

the activation. This information is then passed 

throughout the network. Based on the connection 

strengths (weights), inhibition or excitation, and 

transfer functions, the activation value is passed from 

node to node. Each node sums the activation values it 

receives; it then modifies the value based on its 

transfer function. The activation flows through the 

network, through hidden layers, until it reaches the 

output nodes. The output nodes then reflect the input 

in a meaningful way to the outside world.

Figure 3: The forward flow of input data and the backward propagation of error

During training, the dierence between predicted 

output value and the actual output value (the error) 

will be propagated backward by apportioning them to 

each node’s weights according to the amount of this 

error the node is responsible for. The gradient descent 

algorithm may be used here. Figure 3 shows the 

forward flow of input information and the backward 

flow of the error in the predicted value. A key job in 

training the ANN is to optimize the weights between 

their connections to have a minimum error in its 

prediction.

An alternative to using the back propagation  

procedure is  to use the conjugate-gradient 

optimization method to globally optimize the weights. 

This method is built into Microsoft Excel® Solver® as 

the GRG (Generalized Reduced Gradient) nonlinear  

macro. In the present use of building an ANN model in 

Microsoft Excel® we used this built-in optimizer to 

train the neural net to determine the optimum 

weights. Choong (2009) has also demonstrated the 

effectiveness of Microsoft Excel®’s GRG nonlinear 

macro.

ANN comprises a network of artificial neurons (also 

known as "nodes"). By programming, these nodes are 

connected to each other, and by training the strength 

(“weight”) of their connections to one another, is 

assigned a value that may inhibit (minimum often 

being -1.0) or excite (maximum being say +1.0) the 

receiver. If the value of this weight is high, then it 

indicates a strong connection. Further, within each 

node's design, a transfer or activation function is built 

in—to help it to act on nonlinearities in input-output 

relationships. The nodes are of three types—input, 

hidden and output. Presently we consider only feed 

forward ANN.
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2.3  Transfer (Activation) Functions

It is the difference in their transfer (activation) 

functions that makes one ANN different from another, 

changing the way they internally process nonlinear 

information and help learning. The transfer function 

translates the input signals to output signals. 

Activation functions commonly used are Unit step 

(threshold), sigmoid, piecewise linear, tanh, ReLU and 

Gaussian. Activation functions introduce non-linearity 

in the network so it would be capable of learning 

complex relationships between the input and the 

output. 

Unit step (threshold)

The output is set at one of two levels, depending on 

whether the total input is greater than or less than 

some threshold value.

Sigmoid or Logistical Sigmoid

The Sigmoid function consists of two functions, logistic 

and tangential. The values of the logistic function 

range from 0 to 1 and -1 to +1 for tangential function. It 

can handle a broad range of positive input numbers all 

the way to infinity and squash the calculation into an 

output between 0 and 1. This is sometimes required 

because we need decision making systems that are 

capable of reasoning within uncertain environments. 

Linearity is not how the real world always works. This 

makes the Sigmoid the most common activation 

function.

Piecewise Linear

The output is proportional to the total weighted 

output. As may be noted, it does minimal calculations 

except squashing large inputs into ±1.

Tanh 

Though the logistic Sigmoid has a nice biological 

interpretation, it turns out that the logistic Sigmoid can 

cause a neural network to get “stuck” during training. 

An alternative to the logistic Sigmoid is the hyperbolic 

tangent or Tanh function. Like the logistic Sigmoid, the 

Tanh function is also Sigmoidal (“s”-shaped), but 

instead outputs values that range (±1). This function 

thus squashes its output into a range of numbers 

between -1 and 1, a much more flexible approach to 

consider because it accounts for both positive and 

negative values. Tanh remains a favourite function to 

use while one designs neural networks. We have used 

it in the present work.

Gaussian

Gaussian functions are bell-shaped curves and 

continuous. The node output (high/low) is interpreted 

in terms of class membership (1/0), depending on how 

close the net input is to a chosen value of average.

2322



NMIMS Engineering and Technology Review
Volume I  Issue 2    June 2019 | |

2.2  How does learning occur? 

Figure 2 indicates the flow of information in the ANN. 

The input nodes take in information in a form which 

can be numerically expressed. The information is 

presented as activation values, where each node is 

given a number; the higher the number, the greater 

the activation. This information is then passed 

throughout the network. Based on the connection 

strengths (weights), inhibition or excitation, and 

transfer functions, the activation value is passed from 

node to node. Each node sums the activation values it 

receives; it then modifies the value based on its 

transfer function. The activation flows through the 

network, through hidden layers, until it reaches the 

output nodes. The output nodes then reflect the input 

in a meaningful way to the outside world.

Figure 3: The forward flow of input data and the backward propagation of error

During training, the dierence between predicted 

output value and the actual output value (the error) 

will be propagated backward by apportioning them to 

each node’s weights according to the amount of this 

error the node is responsible for. The gradient descent 

algorithm may be used here. Figure 3 shows the 

forward flow of input information and the backward 

flow of the error in the predicted value. A key job in 

training the ANN is to optimize the weights between 

their connections to have a minimum error in its 

prediction.

An alternative to using the back propagation  

procedure is  to use the conjugate-gradient 

optimization method to globally optimize the weights. 

This method is built into Microsoft Excel® Solver® as 

the GRG (Generalized Reduced Gradient) nonlinear  

macro. In the present use of building an ANN model in 

Microsoft Excel® we used this built-in optimizer to 

train the neural net to determine the optimum 

weights. Choong (2009) has also demonstrated the 

effectiveness of Microsoft Excel®’s GRG nonlinear 

macro.

ANN comprises a network of artificial neurons (also 

known as "nodes"). By programming, these nodes are 

connected to each other, and by training the strength 

(“weight”) of their connections to one another, is 

assigned a value that may inhibit (minimum often 

being -1.0) or excite (maximum being say +1.0) the 

receiver. If the value of this weight is high, then it 

indicates a strong connection. Further, within each 

node's design, a transfer or activation function is built 

in—to help it to act on nonlinearities in input-output 

relationships. The nodes are of three types—input, 

hidden and output. Presently we consider only feed 

forward ANN.
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2.3  Transfer (Activation) Functions

It is the difference in their transfer (activation) 

functions that makes one ANN different from another, 

changing the way they internally process nonlinear 

information and help learning. The transfer function 

translates the input signals to output signals. 

Activation functions commonly used are Unit step 

(threshold), sigmoid, piecewise linear, tanh, ReLU and 

Gaussian. Activation functions introduce non-linearity 

in the network so it would be capable of learning 

complex relationships between the input and the 

output. 

Unit step (threshold)

The output is set at one of two levels, depending on 

whether the total input is greater than or less than 

some threshold value.

Sigmoid or Logistical Sigmoid

The Sigmoid function consists of two functions, logistic 

and tangential. The values of the logistic function 

range from 0 to 1 and -1 to +1 for tangential function. It 

can handle a broad range of positive input numbers all 

the way to infinity and squash the calculation into an 

output between 0 and 1. This is sometimes required 

because we need decision making systems that are 

capable of reasoning within uncertain environments. 

Linearity is not how the real world always works. This 

makes the Sigmoid the most common activation 

function.

Piecewise Linear

The output is proportional to the total weighted 

output. As may be noted, it does minimal calculations 

except squashing large inputs into ±1.

Tanh 

Though the logistic Sigmoid has a nice biological 

interpretation, it turns out that the logistic Sigmoid can 

cause a neural network to get “stuck” during training. 

An alternative to the logistic Sigmoid is the hyperbolic 

tangent or Tanh function. Like the logistic Sigmoid, the 

Tanh function is also Sigmoidal (“s”-shaped), but 

instead outputs values that range (±1). This function 

thus squashes its output into a range of numbers 

between -1 and 1, a much more flexible approach to 

consider because it accounts for both positive and 

negative values. Tanh remains a favourite function to 

use while one designs neural networks. We have used 

it in the present work.

Gaussian

Gaussian functions are bell-shaped curves and 

continuous. The node output (high/low) is interpreted 

in terms of class membership (1/0), depending on how 

close the net input is to a chosen value of average.
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Linear

Like a linear regression, a linear activation function 

transforms the weighted sum inputs of the neuron to 

an output using a linear function.  It passes the input 

forward without any change in it.

3.  How do we train a Neural Net? We use 

Algorithms to adapt weights

Learning is well known to be a process. Neural nets can 

be configured in manners that adapt to the situation at 

hand so as to minimize their prediction errors. There 

are dierent types of neural networks, but they are 

generally classied into feed-forward and feed-back 

networks.

A feed-forward network is a non-recurrent network 

which contains inputs, outputs, and hidden layers; in it 

the signals can only travel in one direction. Input data is 

passed onto a layer of processing elements where it 

performs calculations. Each processing element makes 

its computation based upon a weighted sum of its 

inputs and its activation function. The new calculated 

values then become the new input values that feed the 

next layer. This process continues until it has gone 

through all the layers and determines the ANN’s 

output. A threshold transfer function is sometimes 

used to quantify the output of a neuron in the output 

layer. Often used in data mining, feed-forward 

networks include Perceptron (linear and non-linear) 

and Radial Basis Function networks. The present study 

uses a feed forward ANN.

A feed-back network has feed-back paths meaning 

they can have signals traveling in both directions using 

loops. All possible connections between neurons are 

allowed. Since loops are present in this type of 

network, it becomes a non-linear dynamic system 

which changes continuously until it reaches a state of 

equilibrium. Feed-back networks are often used in 

associative memories and optimization problems 

where the network looks for the best arrangement of 

interconnected factors.

3.1  Neural networks for modelling manufacturing 

processes

ANNs have been used by several researchers in 

manufacturing. A signicant application of ANNs in 

manufacturing, to judge by the volume of publications, 

is in the area of process monitoring and control, where 

ANNs have provided an alternative to the traditional 

Statistical Quality Control (SQC) charting methods. 

ANN is used here to identify the appearance of 

‘‘special causes’’ (unnatural process faults which may 

adversely affect quality) by recognizing abnormal 

patterns in the process outputs. Typically, using this 

approach, the network is trained (using process 

outputs as its inputs) to recognize specic abnormal 

patterns and associate them with specied fault 

conditions. The trained network is then used to 

monitor the process outputs. It is expected that once 

trained, the network will respond with an output 

indicating the particular type of special cause, when a 

similar pattern reappears in the process outputs. 

Zorriassatine and Tannock (1998) provide a review of 

this approach.

The use of ANN for process modelling must be 

distinguished from their use for process monitoring 

and control. When modelling the process, the network 

is trained using process parameters (e.g., process 

settings or in-process measurements) as its inputs, and 

p r o c e s s  r e s p o n s e / o u t p u t s  ( e . g . ,  q u a l i t y 

characteristics) as the network outputs.  The intention 
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is that the network should behave exactly like the 

process in respect to its response to parameters and 

conditions, hence providing a model of the process, 

which can then be used for experimentation and 

process optimization. Su and Hsieh (1998) compare 

the optimization of a semiconductor manufacturing 

process by using Taguchi’s approach with the ANN. 

Coit, Jackson and Smith (1998) suggest some practical 

aspects of constructing and validating ANNs for 

manufacturing process modelling.  Cook, Ragsdale 

and Major (2000) combined ANNs together with 

genetic algorithms to model and optimize a critical 

strength parameter in a particleboard manufacturing 

process.  optimized Tong, Lee-Ing and Hsieh (2000) 

multiple quality response characteristics (both 

qualitative and quantitative) in IC manufacturing using 

ANNs. A noted benefit is that some of these modelling 

applications allow experiments to be conducted 

directly with the trained ANN model to explore 

planned what-if conditions, instead of manipulating 

the real process. 

Substantial progress has been made in ANN training 

strategies even though we are still learning the use of 

this new tool. But according to a survey of business 

applications by Vellido, Lisboa and Vaughan (1999), a 

disadvantage of ANN for process modelling is the lack 

of guidance and background that still prevails in 

selecting ANN architectures.  Various techniques to 

help developers select the optimum ANN topology are 

periodically reported. For example, Williamson (1995) 

used Genetic Algorithms for selecting the optimal ANN 

topology while Khaw, Lim, and Lim (1995), Macleod, 

Dror and Maxwell (1999), and Lin and Tseng (2000) 

preferred Taguchi experimental design methods. 

Today deep learning—immensely effective in image 

and voice recognition—stands at the frontier of this 

technology (Patil et al 2019).

4. Training neural networks for the 

modelling of complex processes

This section outlines the steps for the training of ANNs 

to model complex industrial processes. Often the 

decision to utilize the ANN methodology is prompted 

by the complexity of the process being studied, for no 

coherent link between the several inputs and the 

outputs may be apparent.  Complex processes are 

considered to be those where there are multiple 

process parameters and/or environmental conditions 

which are thought to affect process behaviour. There 

may also be multiple process responses/outputs, and a 

full theoretical understanding of the process operation 

may be missing. 

The five steps typically used in training the ANN are:

• process parameter and process response 

identification,

• training data collection, 

• training and testing set preparation,

• training and testing the network,

• training using hints

4.1  Process parameters and process response 

identification

The idea of using ANNs to model the processes is to 

create networks that take process parameters as 

inputs and produce process responses (such as quality, 

cycle time, yield, etc.) as outputs. One way to do this is 

to assign all available process parameters as network 

inputs, and then let the network adjust itself during 

training so that the connection of any insignificant 

process parameters becomes weak. Another approach 

is to be more selective—and use prior experience or 

knowledge to assign as inputs only those parameters 

that are believed to influence the process outputs. The 

first approach has been termed the ''global network'' 

while the second is called the ''focused network'' 

( These authors showed that, Wilcox and Wright 1998). 

when modelling the same process, the focused 

network performed better than the global one, 

suggesting that process parameters should be 

carefully selected to improve the performance of a 

network. However, one must note that for either 
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Linear

Like a linear regression, a linear activation function 

transforms the weighted sum inputs of the neuron to 

an output using a linear function.  It passes the input 

forward without any change in it.

3.  How do we train a Neural Net? We use 

Algorithms to adapt weights

Learning is well known to be a process. Neural nets can 

be configured in manners that adapt to the situation at 

hand so as to minimize their prediction errors. There 

are dierent types of neural networks, but they are 

generally classied into feed-forward and feed-back 

networks.

A feed-forward network is a non-recurrent network 

which contains inputs, outputs, and hidden layers; in it 

the signals can only travel in one direction. Input data is 

passed onto a layer of processing elements where it 

performs calculations. Each processing element makes 

its computation based upon a weighted sum of its 

inputs and its activation function. The new calculated 

values then become the new input values that feed the 

next layer. This process continues until it has gone 

through all the layers and determines the ANN’s 

output. A threshold transfer function is sometimes 

used to quantify the output of a neuron in the output 

layer. Often used in data mining, feed-forward 

networks include Perceptron (linear and non-linear) 

and Radial Basis Function networks. The present study 

uses a feed forward ANN.

A feed-back network has feed-back paths meaning 

they can have signals traveling in both directions using 

loops. All possible connections between neurons are 

allowed. Since loops are present in this type of 

network, it becomes a non-linear dynamic system 

which changes continuously until it reaches a state of 

equilibrium. Feed-back networks are often used in 

associative memories and optimization problems 

where the network looks for the best arrangement of 

interconnected factors.

3.1  Neural networks for modelling manufacturing 

processes

ANNs have been used by several researchers in 

manufacturing. A signicant application of ANNs in 

manufacturing, to judge by the volume of publications, 

is in the area of process monitoring and control, where 

ANNs have provided an alternative to the traditional 

Statistical Quality Control (SQC) charting methods. 

ANN is used here to identify the appearance of 

‘‘special causes’’ (unnatural process faults which may 

adversely affect quality) by recognizing abnormal 

patterns in the process outputs. Typically, using this 

approach, the network is trained (using process 

outputs as its inputs) to recognize specic abnormal 

patterns and associate them with specied fault 

conditions. The trained network is then used to 

monitor the process outputs. It is expected that once 

trained, the network will respond with an output 

indicating the particular type of special cause, when a 

similar pattern reappears in the process outputs. 

Zorriassatine and Tannock (1998) provide a review of 

this approach.

The use of ANN for process modelling must be 

distinguished from their use for process monitoring 

and control. When modelling the process, the network 

is trained using process parameters (e.g., process 

settings or in-process measurements) as its inputs, and 

p r o c e s s  r e s p o n s e / o u t p u t s  ( e . g . ,  q u a l i t y 

characteristics) as the network outputs.  The intention 
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is that the network should behave exactly like the 

process in respect to its response to parameters and 

conditions, hence providing a model of the process, 

which can then be used for experimentation and 

process optimization. Su and Hsieh (1998) compare 

the optimization of a semiconductor manufacturing 

process by using Taguchi’s approach with the ANN. 

Coit, Jackson and Smith (1998) suggest some practical 

aspects of constructing and validating ANNs for 

manufacturing process modelling.  Cook, Ragsdale 

and Major (2000) combined ANNs together with 

genetic algorithms to model and optimize a critical 

strength parameter in a particleboard manufacturing 

process.  optimized Tong, Lee-Ing and Hsieh (2000) 

multiple quality response characteristics (both 

qualitative and quantitative) in IC manufacturing using 

ANNs. A noted benefit is that some of these modelling 

applications allow experiments to be conducted 

directly with the trained ANN model to explore 

planned what-if conditions, instead of manipulating 

the real process. 

Substantial progress has been made in ANN training 

strategies even though we are still learning the use of 

this new tool. But according to a survey of business 

applications by Vellido, Lisboa and Vaughan (1999), a 

disadvantage of ANN for process modelling is the lack 

of guidance and background that still prevails in 

selecting ANN architectures.  Various techniques to 

help developers select the optimum ANN topology are 

periodically reported. For example, Williamson (1995) 

used Genetic Algorithms for selecting the optimal ANN 

topology while Khaw, Lim, and Lim (1995), Macleod, 

Dror and Maxwell (1999), and Lin and Tseng (2000) 

preferred Taguchi experimental design methods. 

Today deep learning—immensely effective in image 

and voice recognition—stands at the frontier of this 

technology (Patil et al 2019).

4. Training neural networks for the 

modelling of complex processes

This section outlines the steps for the training of ANNs 

to model complex industrial processes. Often the 

decision to utilize the ANN methodology is prompted 

by the complexity of the process being studied, for no 

coherent link between the several inputs and the 

outputs may be apparent.  Complex processes are 

considered to be those where there are multiple 

process parameters and/or environmental conditions 

which are thought to affect process behaviour. There 

may also be multiple process responses/outputs, and a 

full theoretical understanding of the process operation 

may be missing. 

The five steps typically used in training the ANN are:

• process parameter and process response 

identification,

• training data collection, 

• training and testing set preparation,

• training and testing the network,

• training using hints

4.1  Process parameters and process response 

identification

The idea of using ANNs to model the processes is to 

create networks that take process parameters as 

inputs and produce process responses (such as quality, 

cycle time, yield, etc.) as outputs. One way to do this is 

to assign all available process parameters as network 

inputs, and then let the network adjust itself during 

training so that the connection of any insignificant 

process parameters becomes weak. Another approach 

is to be more selective—and use prior experience or 

knowledge to assign as inputs only those parameters 

that are believed to influence the process outputs. The 

first approach has been termed the ''global network'' 

while the second is called the ''focused network'' 

( These authors showed that, Wilcox and Wright 1998). 

when modelling the same process, the focused 

network performed better than the global one, 

suggesting that process parameters should be 

carefully selected to improve the performance of a 

network. However, one must note that for either 
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number of ways, as described in the following 

paragraphs. Note that Josh and Shah (2019) provide a 

sampling procedure to help collect training data.

4.2.1  Simulated data

When large amounts of data are not available from the 

actual manufacturing process, simulated data can be 

substituted. Simulated data includes data prepared 

from statistical models (such as the normal 

distribution), Monte Carlo runs and computational or 

numerical simulations (such as finite-element analysis 

methods, or the ball bearing technology selection 

example of Bagchi (2012)). Networks trained using this 

type of data can be used to capture information from a 

process model and to eventually replace the 

numerical, quasi-theoretical, or even a simulation 

model's equations. The trained network might then be 

used to estimate optimal settings for process 

parameters by conducting a grid search, Taguchi-type 

experiments, hill-climbing, etc. in the region of 

interest. (We shall attempt this optimization using 

Microsoft Excel® Solver® and the data in Table 1.)

Still, one gains several advantages of using simulated 

data. First, simulated data can be noise-free (unless 

one intends noise to be part of the model). The 

random uncontrollable variation, which affects real 

process data, is thus eliminated. Hence, it should be 

easier to train the neural network with this data. 

Second, it is usually easier, cheaper and faster to train a 

network, and run an experiment, using simulated data. 

However, the simulated data may have a serious 

drawback, that is the statistical or computational 

models providing the data might itself not be a good fit 

to the real production process, which might lead to 

inaccurate results from the trained ANN when using 

real process data to predict the output.  To reduce this 

effect, several researchers have combined simulated 

data with some actual process data for training.

approach, if a significant process parameter input is 

missing, ANN's performance will be compromised, as 

the variation in the available input data will not be 

sufficient to explain the variation in the process output 

characteristics. This is what makes the selection of 

input factors critical. 

Process response used for ANN training should be an 

appropriate measurement of the successful value-add 

to the process in focus. The selection of a suitable 

response requires an understanding of the process 

and what it lacks. The ANN, one may further note, can 

be trained to predict both a single response and 

multiple responses—with only marginal added effort.

4.2  Training data collection

Training an ANN usually requires a substantial amount 

of good data, of which one part will be used for training 

and the rest will be used for testing the goodness of the 

trained network. Having selected the significant 

process parameters and assigned them to network 

inputs, the next key step is to acquire the required 

process parameter (the control factors) and response 

(output) data for training. It is important that the 

parameter data be correctly associated with the 

consequent process output data. Hence, data 

collection is an important step to ensure the 

sufficiency and integrity of the data used to train the 

network, as the network performance can only be as 

good as the training data.  

It is not possible to say how many data items are 

appropriate, because this depends on the complexity 

of the process modelling problem.  Generally, the 

training data should be representative of the entire 

population of data items, unless there is a good reason 

to resort to stratification or data blocking.  

The proportion of training in testing data has varied 

considerably in the published research. For example, 

Nascimento, Guidici and Guardani (2000) vary the 

ratio  from  1:1 to  3:1; Tong, Lee-Ing and Kun-Lin Hsieh 

(2000) use  2:1  and  Coit, Jackson and Smith (1998) 

use 4:1. Training and testing data can be acquired in a 
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4.2.2  Actual process data

Raw process data may also be used for training 

—whenever available, for this is coming straight from 

the “voice” of the actual process! Many manufacturing 

companies already have available both process 

parameter data and quality inspection/product test 

data deposited in their ERP systems or on the process 
®engineer's Microsoft Excel  sheets. In order to use 

them for ANN training, it must be possible to relate the 

two for an individual product—in other words, here 

product traceability is required. This is frequently the 

case, for example, in the aerospace and silicon wafer 

industries where good data logging systems exist.  

However, these data might be collected as 'quality 

control' records rather than for use in process 

modelling, and hence, the process parameters set 

might not cover the full range possible (a necessity for 

training) and might not include the optimum 

conditions. Also, the data collection and storage may 

not be tightly controlled; this will result in data 

integrity problems. However, such historical data 

reflect a wide variety in real process conditions and if 

they are available, no further data collection cost will 

be incurred. The authors have experienced that this is 

generally possible in factories.

If large amounts of raw data are available, using all of it 

might be unnecessary and time-consuming. Random 

selection of the required training and testing sets from 

the available data can be employed, but it is important 

that the selected data cover the entire population of 

interest—evenly—to be representative of the domain 

of the process. (We visit this point in our example 

below.)

4.2.3  Process data collected from designed 

experiments

Data in this category are actual process data that are 

not collected directly from the normal production 

conditions but are obtained from Designed Statistical 

Experiments (DOE) conducted on the process, often 

using the Taguchi approach (Rajagopalan and 

Rajagopalan, 1996). The investigator, in this case, has 

strategic control over data collection, and since 

unwanted effects can be blocked in these controlled 

experiments, unwanted noise effects are reduced. 

Generally, data from designed experiments are more 

carefully collected in a controlled environment. 

Furthermore, literature suggests that well-designed 

experiments such as the Central Composite Designs 

(CCD), described in Montgomery (2007), should be 

used here.  CCD should be able to cover a wider range 

of process parameters, which should target to include 

second order nonlinearities and factor effect 

interactions and possible, yet unknown optimum 

factor setting within those regions. The undesirable 

aspects of DOE data are that it is costly to collect, often 

confusing to technicians and might still not reflect real 

process conditions. For the most part, CCD attempts to 

estimate only up to second order nonlinearity—one 

should remember! If you have resources, go for higher 

resolution experiments.

In this study, for illustration's sake, we used the 

experimental data provided by Montgomery (2007) 

obtained in a CCD exercise cited. Note however, that 

the CCD used by Montgomery (2007) has a big 

inherent limitation. The sampling it does is good only 

for building a second order linear regression model, 

not necessarily a near exact sampling of the real 

response that might have higher order terms and 

factor effect interactions. 

4.3 Training and testing data set preparation

The ANN can only work with data within certain ranges 

and in specified formats. Hence, the data usually have 

to be pre-processed before being presented to the 

network. Studies by Su and Hsieh (1998) provide 

guidance for the preparation of the process data as 

follows.

It is essential to check data integrity, especially when 

using raw process data collected from a quality control 

database. Errors such as incorrectly entered data, 

duplicate and missing data must be corrected, for the 

quality of the network training can only be as good as 

the quality of the training data set, especially in 

medical work.
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number of ways, as described in the following 

paragraphs. Note that Josh and Shah (2019) provide a 

sampling procedure to help collect training data.

4.2.1  Simulated data

When large amounts of data are not available from the 

actual manufacturing process, simulated data can be 

substituted. Simulated data includes data prepared 

from statistical models (such as the normal 

distribution), Monte Carlo runs and computational or 

numerical simulations (such as finite-element analysis 

methods, or the ball bearing technology selection 

example of Bagchi (2012)). Networks trained using this 

type of data can be used to capture information from a 

process model and to eventually replace the 

numerical, quasi-theoretical, or even a simulation 

model's equations. The trained network might then be 

used to estimate optimal settings for process 

parameters by conducting a grid search, Taguchi-type 

experiments, hill-climbing, etc. in the region of 

interest. (We shall attempt this optimization using 

Microsoft Excel® Solver® and the data in Table 1.)

Still, one gains several advantages of using simulated 

data. First, simulated data can be noise-free (unless 

one intends noise to be part of the model). The 

random uncontrollable variation, which affects real 

process data, is thus eliminated. Hence, it should be 

easier to train the neural network with this data. 

Second, it is usually easier, cheaper and faster to train a 

network, and run an experiment, using simulated data. 

However, the simulated data may have a serious 

drawback, that is the statistical or computational 

models providing the data might itself not be a good fit 

to the real production process, which might lead to 

inaccurate results from the trained ANN when using 

real process data to predict the output.  To reduce this 

effect, several researchers have combined simulated 

data with some actual process data for training.

approach, if a significant process parameter input is 

missing, ANN's performance will be compromised, as 

the variation in the available input data will not be 

sufficient to explain the variation in the process output 

characteristics. This is what makes the selection of 

input factors critical. 

Process response used for ANN training should be an 

appropriate measurement of the successful value-add 

to the process in focus. The selection of a suitable 

response requires an understanding of the process 

and what it lacks. The ANN, one may further note, can 

be trained to predict both a single response and 

multiple responses—with only marginal added effort.

4.2  Training data collection

Training an ANN usually requires a substantial amount 

of good data, of which one part will be used for training 

and the rest will be used for testing the goodness of the 

trained network. Having selected the significant 

process parameters and assigned them to network 

inputs, the next key step is to acquire the required 

process parameter (the control factors) and response 

(output) data for training. It is important that the 

parameter data be correctly associated with the 

consequent process output data. Hence, data 

collection is an important step to ensure the 

sufficiency and integrity of the data used to train the 

network, as the network performance can only be as 

good as the training data.  

It is not possible to say how many data items are 

appropriate, because this depends on the complexity 

of the process modelling problem.  Generally, the 

training data should be representative of the entire 

population of data items, unless there is a good reason 

to resort to stratification or data blocking.  

The proportion of training in testing data has varied 

considerably in the published research. For example, 

Nascimento, Guidici and Guardani (2000) vary the 

ratio  from  1:1 to  3:1; Tong, Lee-Ing and Kun-Lin Hsieh 

(2000) use  2:1  and  Coit, Jackson and Smith (1998) 

use 4:1. Training and testing data can be acquired in a 
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4.2.2  Actual process data

Raw process data may also be used for training 

—whenever available, for this is coming straight from 

the “voice” of the actual process! Many manufacturing 

companies already have available both process 

parameter data and quality inspection/product test 

data deposited in their ERP systems or on the process 
®engineer's Microsoft Excel  sheets. In order to use 

them for ANN training, it must be possible to relate the 

two for an individual product—in other words, here 

product traceability is required. This is frequently the 

case, for example, in the aerospace and silicon wafer 

industries where good data logging systems exist.  

However, these data might be collected as 'quality 

control' records rather than for use in process 

modelling, and hence, the process parameters set 

might not cover the full range possible (a necessity for 

training) and might not include the optimum 

conditions. Also, the data collection and storage may 

not be tightly controlled; this will result in data 

integrity problems. However, such historical data 

reflect a wide variety in real process conditions and if 

they are available, no further data collection cost will 

be incurred. The authors have experienced that this is 

generally possible in factories.

If large amounts of raw data are available, using all of it 

might be unnecessary and time-consuming. Random 

selection of the required training and testing sets from 
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that the selected data cover the entire population of 

interest—evenly—to be representative of the domain 
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Experiments (DOE) conducted on the process, often 
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unwanted effects can be blocked in these controlled 

experiments, unwanted noise effects are reduced. 

Generally, data from designed experiments are more 
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information using selected activity functions—to 

deliver a numerical output. It will train itself by using a 

set of input-response data pairs (the training data). The 
®weights will be optimized by Microsoft Excel 's built-in 

®Solver  macro to produce answers as close to the 

actual outputs provided as possible. 

®Upon training, Microsoft Excel  will display the actual 

responses as fed for training it, alongside the net's 

predicted (computed) responses for the input data 

entered. The difference between the net's predicted 

response and the actual response is the error. The 

net's weights will be optimized by the conjugate-

gradient based GRG macro, by minimizing the square 

of these errors. Each of these steps can be coded in 
®Microsoft Excel  in a relatively straightforward manner 

as shown in this section.

Some general aspects of neural nets are to be recalled. 

ANNs are typically non-linear, with the power to 

capture relationships much more complex than 

second order regression equations.  It has been shown 

that even simple ANNs are able to model or reproduce 

almost any nonlinear function (the “responses” {y}) of 

independent variables {x} to an arbitrary degree of 

accuracy, provided the ANN has been properly trained 

(Rocca, 2018).  This performance is dependent on the 

array of neurons used in its several layers, 

architecturally how they are connected, the activation 

functions used to emulate the nonlinearity, and the 

training strategy.  

In advanced ANNs, the number of hidden layers is 

increased and such ANNs are used not for simple 

prediction, but for what is called deep learning, a 

feature particularly useful in image recognition and 

other advanced applications of neural nets. Deep 

learning uses include zip code recognition from a 

handwritten script and voice translation. Still, it is well 

recognized that a biological neural network is far 

bigger and considerably more complex than today's 

man-made computerized neural networks.

When used, the Sigmoidal activation function should 

receive input in the range ±5. If the input is out of the 

acceptable range, it might cause neurons to saturate 

and stop learning. Data scaling ensures that each input 

contributes to the same proportion to the adaptation 

of network weights during training.  Without scaling, 

an input that varies  (say)  from  10,000  to  100,000  

could have a significantly greater effect than the one 

that only varies between 1 and 10. Data coding can 

also be used to reduce the effect of noise in the data, 

before it is presented to the network, thus allowing 

training convergence to occur more readily. 

5.  Building simple neural networks by Microsoft 
®Excel

For learning to play with ANN, it is very much possible 
®to use Microsoft Excel  to build simple neural 

networks.  We show that in this section. The goal of 

this section is to let you dip your toes in this new and 

powerful approach to quantify existing and known 

cause-effect relationships. But working with ANN is 

not a statistical procedure whereby you may establish 

causality. Still, you will be able to model here unknown 

complex nonlinear relationships between the 

observed values of a few independent (control) 

variables and some dependent variables (responses) 
®using the ubiquitous tool— Microsoft Excel , and a 

problem—to explore ANNs with. As you go through 

this paper, you may wish to try the steps hands-on. We 

provide you the data in this exercise, reminding you 

only that the procedure is empirical and the starting 

point will be to have with you a representative sample 

of actual input-output process data, as in Table 1.  

We used Montgomery's CCD data—displayed in Table 

1—to build a simple 2-9-1 ANN with its architecture 

comprising two neurons to receive two independent 

inputs (time and temperature, appropriately 

normalized), a hidden layer with nine neurons (nodes), 

and a single neuron in the third (output) layer to 

deliver the yield. The network we shall presently build 

will not attempt classification; rather it will receive 

numerical data as input, process it using weighted 

connections  and then process the resulting 
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As for training strategies, learning can be supervisory 

when the ANN is shown the correct output {y} for each 

specified member in the array {x} of input and it 

optimizes its connecting weights. Such ANNs are used 

generally for function approximation, prediction and 

forecasting. 

Some ANNs can learn on their own—given input-

output examples repeatedly. Learning, in this case, is 

unsupervised, often employed by classifier ANNs. 

Presently, however, we shall use supervisory learning 

to reproduce nonlinear relationships between a set of 

numerical input variables and numerical responses. 

5.1  The Task at Hand

A representative complex set of interdependent time-

temperature-yield observations were experimentally 

produced as quoted by Montgomery (2007), page 442. 

The analytical solution to relate this interdependent 

set of data was not deemed feasible nor possible to 

produce an expression like yield = f(process and design 

factors). But following the principles of statistical 

design of experiments, the pertinent data values 

ca pt u r i n g  s u c h  i nte rd e p e n d e n c y  co u l d  b e 

experimentally obtained by the judicious setting of the 

control factor level combinations and the resulting 

yield observed. Montgomery's experimental design 

was central composite or CCD, quite effective in 

generating a second order response surface for the 

process under investigation. This is how the training 

data (Table 1) for this illustration of using Microsoft 

Excel® for ANN development was generated. At the 

juncture cited by Montgomery, the investigators 

wished only to be able to predict yield given a set of 

specified input factor values of interest, not by running 

the manufacturing process physically in a search mode 

under various conditions to find the yield numbers. 

Their goal was to explore the process and design 

conditions that would lead consistently to high yield, 

not insisting to obtain the best ever possible yield for 

this chemical process.

5.2  The issue of a small number of observations 

(instances) in the Training Set

As with statistical inference, larger the sample's size, 

the more precise will be the estimates. This principle 

applies to build multi-factor linear regression models 

as well (Montgomery 2007). Two issues are prominent 

in the strategy to collect data for model building in 

statistics. The first is the quality of the estimated model 

parameters .  The  second i s  the  capture  of 

nonlinearities in the input-response relationship, 

generally modelled using factor interaction, and the 

use of higher degree terms in regression. Theory in this 

regard is well developed.  Being a young domain, 

regression model building based on ANN does not yet 

have a comparable rooting in theory, though due to 

the availability of powerful processors and large 

inexpensive memory, kernels and other methods have 

been devised that enable it to capture nonlinearities 

with amazing accuracy and precision (Rocca, 2018; 

Bagchi, 2013). The ANN technique also infers 

(“learns”) the input-response dependency by 

est imating i ts  own model  parameters—the 

connection weights {wij} between the neuron layers 

(Figure 3).  However, even with the computational 

machinery at hand, frequently one is unable to find a 

sufficiently large set on input-response instances. As in 

stat i st ica l  inference,  one recourse  here  i s 

bootstrapping (Paass, 1993). As an analog to the 

statistical notion of bootstrapping—drawing many 

secondary samples with replacement from a primary 

sample of data of limited size to produce empirical 

est imates of  parameters of  interest  of  the 

population—is often feasible (Efron, 1979). 

Paass (1993) discusses how the same may be done to 

train an ANN. It regards the ANN to be a nonlinear or 

nonparametric regression model which defines the 

relation between vectors X and Y of input and output 

variables. The procedure he uses generates the 

training dataset by repeated sampling of the primary 

dataset on a limited quantity of input-response 

instances whose effectiveness he demonstrates. 

Several other studies have now used bootstrapping to 

develop training data in machine learning (Neumann 
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5.  Building simple neural networks by Microsoft 
®Excel

For learning to play with ANN, it is very much possible 
®to use Microsoft Excel  to build simple neural 

networks.  We show that in this section. The goal of 

this section is to let you dip your toes in this new and 

powerful approach to quantify existing and known 

cause-effect relationships. But working with ANN is 

not a statistical procedure whereby you may establish 

causality. Still, you will be able to model here unknown 

complex nonlinear relationships between the 

observed values of a few independent (control) 

variables and some dependent variables (responses) 
®using the ubiquitous tool— Microsoft Excel , and a 

problem—to explore ANNs with. As you go through 

this paper, you may wish to try the steps hands-on. We 

provide you the data in this exercise, reminding you 

only that the procedure is empirical and the starting 

point will be to have with you a representative sample 

of actual input-output process data, as in Table 1.  

We used Montgomery's CCD data—displayed in Table 

1—to build a simple 2-9-1 ANN with its architecture 

comprising two neurons to receive two independent 

inputs (time and temperature, appropriately 

normalized), a hidden layer with nine neurons (nodes), 

and a single neuron in the third (output) layer to 

deliver the yield. The network we shall presently build 

will not attempt classification; rather it will receive 

numerical data as input, process it using weighted 

connections  and then process the resulting 
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specified member in the array {x} of input and it 

optimizes its connecting weights. Such ANNs are used 
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Bagchi, 2013). The ANN technique also infers 

(“learns”) the input-response dependency by 

est imating i ts  own model  parameters—the 
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(Figure 3).  However, even with the computational 
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population—is often feasible (Efron, 1979). 
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dataset on a limited quantity of input-response 

instances whose effectiveness he demonstrates. 

Several other studies have now used bootstrapping to 

develop training data in machine learning (Neumann 
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used for bootstrapping, must approach this condition. 

In this study, we chose to use Table 1, extracted from 

Montgomery's cited CCD experiments. Note that the 

data collection procedure used (the CCD experiment) 

had a different goal—by statistical design, it aimed to 

aid the estimation of only a second order statistical 

regression model, the likeness being model (2). For 

higher order models, hopefully, to deliver a regression 

model of superior predictive capability than (2), the 

domain spanned by the process control (i.e., input) 

variables would be sampled extensively, using 

observation points suitably spread and scattered in the 

decision space (Box, Hunter and Hunter, 1978).

and Schiller, 2000). Paass (1993) asserts that the 

approach is valid for a large number of linear, nonlinear 

and even nonparametric regression problems. He 

states that bootstrapping has the potential to model 

the distribution of estimators (for ANN the connection 

weights) to a higher precision than the usual normal 

asymptotics based on the original data. 

Some critical observations are now in order. To achieve 

good fidelity, since model building in ANN is empirical, 

experts urge that ANN's training dataset must attempt 

to span its entire range of interest of input conditions 

in which the ANN will be used for prediction. The 

extent of such spanning, if that primary data is to be 

®Figure 4: Overview of the typical steps in ANN building by Microsoft Excel  employed by authors

NMIMS Engineering and Technology Review
Volume I  Issue 2    June 2019 | |

Figure 5: The inside view of data manipulation in ANN to develop output from input. Computed H and yHat are 

reformed by activation Φ(.) to seize nonlinearities. This scheme was implemented by the authors.

The limited hypothesis that led to the empirical 

estimation of model (2) speculated that a second order 

response would be sufficient to capture nonlinearities 

due to reaction time and reaction temperature for the 

optimization being attempted (by RSM, Ch 11, 

Montgomery 2007), and also that the effect of any 

other factors would be negligible. We wish to point out 

that the 13 CCD data instances observed (Table 1) do 

not all reveal identical factor effect information. 

Experiments 1 to 5, and 10 to 13 manifest the effect on 

yield of varying time and temperature, and the effect 

of any uncontrolled “input” variables, whereas 

replicated experiments 5 to 9 with time and 

temperature held constant reveal the effect primarily 

of the uncontrolled variables.

All the 13 observations also reflect any nonlinearity in 

the input-response relationship. In this study, we 

intended to use these very 13 observations to build an 

ANN and compare its predictive quality with model (2).  

No other data acquisition strategy would be used (we 

couldn't do any more experiments!): The ANN to be 

built would use all, and only, these 13 input-output 

observations as our primary data. The only extra step 

we took, by invoking the work of Paass (1993), was to 

bootstrap Table 1 by a simple procedure—we 

computationally bootstrapped the 13 data points 

seven times to generate a training dataset with 104 

observations—13 primary and 91 secondary (Paass 

1993). Subsequently, as the goal of this study, if the 

resulting ANN would evidence good fidelity, we would 

explore the possibility of testing the idea of 'reverse 

mapping' with it.   

The typical steps for building the ANN by Microsoft 

Excel®—only for illustrative purpose—are displayed in 

Figure 4. (This figure displays a model built to predict 

yield in a ball bearing manufacturing process.)

Most of the ANN-related data were kept in Microsoft 

Excel® in matrix form and manipulated using built-in 

functions including TRANSPOSE and MMULT. The 

actual data manipulations followed operations of 

linear algebra, a glimpse of which is given in Figure 5. 
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The connection weights were globally optimized by 

Microsoft Excel® Solver® by minimizing the sum of 

squared errors—the difference between the predicted 

and the actual response values noted in Table 1. We 

note in passing that subsequent development of 

software tools based on programming in Python have 

created extensive matrix manipulation libraries of 

tools, the popular ones being TensorFlow® and Keras®. 

These reduce the developer's coding a great deal.

Reckon that so far, we only reproduced by ANN what 

Montgomery had analytically done in Chapter 11 using 

his CCD data (that we presently bootstrapped), and 

little else. His response surface model ((2) cited earlier) 

would also predict yield—given valid values for time 

and temperature, albeit considering only up to second 

order terms. And it would allow one to optimize the 

process 'easily' since the regression model produced 

by CCD has a nice closed functional form. It is still 

noteworthy that unlike ANN, regression model (2) 

could be built under only the rather restrictive 

conditions of linearity in parameters ({β } in (1)) and i

nonlinearities captured only up to second order terms. 

7   How did the ANN fare in comparison with .

Montgomery's CCD model?

Model (2) is the result of building a second order 

regression model using the standard statistical 

procedure and assumptions. The method is 

statistically precise in that it can help one predict yield 

given values within the span of the process domain 

explored experimentally, albeit within the limits of the 

underlying assumptions of ignoring higher order 

dependencies and other nonlinearities. Such 

predictive ability of model (2) can lead one to quickly 

build the response surface of yield, a key step in 

optimizing yield. In comparison, predictability is also 

possible for the ANN model built, except that the world 

of artificial neural networks still remains somewhat of 

a black box. Yes, we can print out the final optimized 

weights of the trained ANN. But writing the equation 

for the response (here yield) in terms of given inputs is 

generally intractable. Hence, to make a prediction by 

ANN, we must enter the inputs of interest into the 

actual parameterized code of the trained ANN, not an 

equation. 

Table 2: Comparison of observed yield and the ANN's predictions as obtained by authors

 CCD CCD Yield Real x1 Real x2 Normalized Normalized Normalized Predicted real Y
 Input x1 Input x2 Observed   x1 x2 Actual Yield by Tanh in ANN
   Actual

 -1 -1 76.5 80 170 0.14639321 0.14639321 0.191489 76.5006472

 -1 1 77 80 180 0.14639321 0.85360679 0.297872 76.9997737

 1 -1 78 90 170 0.85360679 0.14639321 0.510638 78.000603

 1 1 79.5 90 180 0.85360679 0.85360679 0.829787 79.4997472

 0 0 79.9 85 175 0.5 0.5 0.914894 79.9399325

 0 0 80.3 85 175 0.5 0.5 1 79.9399325

 0 0 80 85 175 0.5 0.5 0.93617 79.9399325

 0 0 79.7 85 175 0.5 0.5 0.87234 79.9399325

 0 0 79.8 85 175 0.5 0.5 0.893617 79.9399325

 1.414 0 78.4 92.07 175 1 0.5 0.595745 78.4001785

 -1.414 0 75.6 77.93 175 0 0.5 0 75.6004931

 0 1.414 78.5 85 182.07 0.5 1 0.617021 78.4997551

 0 -1.414 77 85 167.93 0.5 0 0.297872 77.000694
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Figure 6: The authors' trained ANN to predict yield given time and temperature as inputs

Let us see another aspect of this two-pronged attempt 

to understand the underlying chemical process 

empirically. With little further explanation, we present 

the final results due to model (2) and by ANN visually in 

Figures 7 and 8 respectively. Clearly, based on 

bootstrapped training, Figure 8 reveals more about the 

process and its nonlinearities; hence, it is likely to be a 

better predictor. The response surface in Figure 7 may 

be improved by expanding the exploration of the 

original process space by going beyond the 13 CCD 

points of Table 1 (Box, Hunter and Hunter, 1978). Such 

additionally observed data, preferably randomly 

experimentally sampled in the time-temperature 

space, is also likely to further mend Figure 8.

ndFigure 7:   2  Order Response surface fitted using the CCD model (2) obtained by authors
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his CCD data (that we presently bootstrapped), and 

little else. His response surface model ((2) cited earlier) 

would also predict yield—given valid values for time 

and temperature, albeit considering only up to second 

order terms. And it would allow one to optimize the 

process 'easily' since the regression model produced 

by CCD has a nice closed functional form. It is still 

noteworthy that unlike ANN, regression model (2) 

could be built under only the rather restrictive 

conditions of linearity in parameters ({β } in (1)) and i

nonlinearities captured only up to second order terms. 

7   How did the ANN fare in comparison with .

Montgomery's CCD model?

Model (2) is the result of building a second order 

regression model using the standard statistical 

procedure and assumptions. The method is 

statistically precise in that it can help one predict yield 

given values within the span of the process domain 

explored experimentally, albeit within the limits of the 

underlying assumptions of ignoring higher order 

dependencies and other nonlinearities. Such 

predictive ability of model (2) can lead one to quickly 

build the response surface of yield, a key step in 

optimizing yield. In comparison, predictability is also 

possible for the ANN model built, except that the world 

of artificial neural networks still remains somewhat of 

a black box. Yes, we can print out the final optimized 

weights of the trained ANN. But writing the equation 

for the response (here yield) in terms of given inputs is 

generally intractable. Hence, to make a prediction by 

ANN, we must enter the inputs of interest into the 

actual parameterized code of the trained ANN, not an 

equation. 

Table 2: Comparison of observed yield and the ANN's predictions as obtained by authors

 CCD CCD Yield Real x1 Real x2 Normalized Normalized Normalized Predicted real Y
 Input x1 Input x2 Observed   x1 x2 Actual Yield by Tanh in ANN
   Actual

 -1 -1 76.5 80 170 0.14639321 0.14639321 0.191489 76.5006472

 -1 1 77 80 180 0.14639321 0.85360679 0.297872 76.9997737

 1 -1 78 90 170 0.85360679 0.14639321 0.510638 78.000603

 1 1 79.5 90 180 0.85360679 0.85360679 0.829787 79.4997472

 0 0 79.9 85 175 0.5 0.5 0.914894 79.9399325

 0 0 80.3 85 175 0.5 0.5 1 79.9399325

 0 0 80 85 175 0.5 0.5 0.93617 79.9399325

 0 0 79.7 85 175 0.5 0.5 0.87234 79.9399325

 0 0 79.8 85 175 0.5 0.5 0.893617 79.9399325

 1.414 0 78.4 92.07 175 1 0.5 0.595745 78.4001785

 -1.414 0 75.6 77.93 175 0 0.5 0 75.6004931

 0 1.414 78.5 85 182.07 0.5 1 0.617021 78.4997551

 0 -1.414 77 85 167.93 0.5 0 0.297872 77.000694
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Figure 6: The authors' trained ANN to predict yield given time and temperature as inputs

Let us see another aspect of this two-pronged attempt 

to understand the underlying chemical process 

empirically. With little further explanation, we present 

the final results due to model (2) and by ANN visually in 

Figures 7 and 8 respectively. Clearly, based on 

bootstrapped training, Figure 8 reveals more about the 

process and its nonlinearities; hence, it is likely to be a 

better predictor. The response surface in Figure 7 may 

be improved by expanding the exploration of the 

original process space by going beyond the 13 CCD 

points of Table 1 (Box, Hunter and Hunter, 1978). Such 

additionally observed data, preferably randomly 

experimentally sampled in the time-temperature 

space, is also likely to further mend Figure 8.

ndFigure 7:   2  Order Response surface fitted using the CCD model (2) obtained by authors
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Figure 8:  Response surface generated by the 2-9-1 ANN with Tanh Activation and bootstrapped training as 

obtained by authors. This trained response surface produced by authors using Microsoft Excel® Solver® is 

identical to the surface produced separately by SPSS 22 based on the same training data.

8.  However, an intrigue remains!

Elegant as it is, model (2) is yet unable to find the time-

temperature combination given some pre-specified 

value of yield; for instance, say for yield = 78.  Solving 

multiple regression models of the likes of (2) in 

reverse, in general, would be intractable. At the outset 

of this study, we had set out to be able to respond to 

such a question, yet the RSM method won't answer it 

without engaging such methods perhaps as goal 

programming. It's worth noting that this question is 

one almost trivial to respond to—for the trained ANN 

model sitting on the worksheet behind Figure 6. For 

this, we twist it.

To answer now the process engineer's question such as 

“What time and temperature do I need to set on the 

process to get the yield of …?” one would proceed as 

follows.

Since at this stage the ANN is already trained, its input 

and output are now rigidly connected, mathematically 

and exactly, within the limitation of the training carried 

out and the linear algebraic equations, optimized 

weights, and activity functions incorporated in it. 

Hence, given some particular input value pair (time* 

and temperature*), the trained ANN would give 

exactly the same output (yield*) every time, except for 

degeneracy.  

Being connected end-to-end mathematically, the 

reverse relationship also holds: Given some valid 

target yield# and the trained ANN, we would be 

handed back the exact same or a valid process factor 

value pair (time#, temperature#) every time. 

Mathematically this input-output relationship is one-

to-one and onto, i.e., bijective, or it is surjective—for 

every element y in the codomain Y of f there is at least 

one element x in the domain X of f such that f(x) = y. It is 

not required that x be unique; the function f may map 

one or more elements of X to the same element of Y 

(Wikipedia, 2019). Thus, such an ANN is an amazing 

facility to help discover input conditions that would 

lead to some particular and specified yield number! 

Once the ANN is thoroughly trained, if some desired 

output (yield) is specified, the ANN—with the same 

training weights carefully preserved on the Microsoft 

Excel® worksheet—will be able to tell us the matching 

input conditions by reverse mapping. All we have to do 

is to briefly run the Microsoft Excel® Solver®'s GRG 

nonlinear optimizer in reverse on the trained ANN. 

Why are we doing this by ANN? Generally speaking, 

regression models such as (2) can't be easily solved 

backward—from target output values to their 

unknown matching inputs. Procedurally we would 

need to do as follows.
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The Microsoft Solver® dialog box must now set yield as 

the optimization objective, equated to the desired 

target value, with time and temperature entered as 

the decision variables in the dialog box whose 

optimum values will be searched by GRG using the 

trained ANN. (Be careful to enter valid constraints in 

the dialog for the search to work correctly!) Table 2 

displays some trials. The trained ANN can also 

generate the response surface to help the analyst 

visualize the input-response dependency. Figure 8 

shows this. This “reverse optimization capability” of a 

trained ANN is thus a rather clever exploit of neural 

nets and a huge time saver, even if we continue to 

loosely say that the ANN works like a black box and 

“never shows the equations” linking input to output.  

With a trained ANN or a deep learned network, you will 

neither need nor will ever know the "equations" 

linking input to output (Gershenson, 2018; Hornik, 

Tinchdombe and White, 1989; Kolhe and Bhise, 2019; 

Siddique et al., 2019). 

Note further that it is possible that such tracing back by 

Microsoft Solver® may lead to degenerate or multiple 

candidate answers, for end-to-end process paths may 

not always be unique (see the contours on the yield 

surface in Figure 8—many  time-temperature 

combinations would give identical yield). But such 

situations may be resolved by some secondary 

selection criteria such as expediency or cost, etc.

Table 2: The trained ANN's Reverse Predicting the required Control Variable settings, given desired yield 

targets, as obtained by authors

Required process settings discovered by ANN

 Yield desired Time Temperature

 76 79.009607 172.92076

 77 79.594144 174.151356

 78 80.395863 174.579339

 79 81.508053 174.735613

 Max 79.9709076 85.908794 176.45915

9.  Applicability and Limitations of Research, 

and Future Research Opportunities

This study has successfully demonstrated a most 

useful capability of a well-trained ANN—it can help 

locate or discover process conditions (inputs) to deliver 

a pre-specified response-on-target. This capability of 

neural nets generally goes unexploited, though a lot of 

historical process data with much training value 

languishes in storage in computer files in process 

plants. But such intrigues abound in the application of 

advanced manufacturing technologies such as EDM, 

CNC, and robotics, fabricating VLSI or memory chips, 

processing pharmaceuticals, or in alloy steel 

production. Much of this is currently attacked by 

exploratory plant trials or by designed experiments as 

necessitated.

Microsoft Excel® can frequently do a good job for 

building an ANN

Modelling physical phenomena has been a strongly 

desirable aspect of human intellectual pursuit—we 

want to understand and control the phenomena and 

systems around us—in order to live well. The tools that 

we have used have been qualitative, and wherever 

possible, quantitative. Sometimes the goal is to 

optimize the phenomena or processes in which we 

have an interest. We have employed logic, abstraction 

and math, and recently computing machinery— 

hardware and software—to expand our capabilities. 

The recent advent of artificial intelligence, the popular 

objet d'art being the neural net, has greatly enhanced 

this capability of ours, particularly in getting “almost as 

close to as we wish” to the true phenomenon with 
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Figure 8:  Response surface generated by the 2-9-1 ANN with Tanh Activation and bootstrapped training as 

obtained by authors. This trained response surface produced by authors using Microsoft Excel® Solver® is 

identical to the surface produced separately by SPSS 22 based on the same training data.

8.  However, an intrigue remains!

Elegant as it is, model (2) is yet unable to find the time-

temperature combination given some pre-specified 

value of yield; for instance, say for yield = 78.  Solving 

multiple regression models of the likes of (2) in 

reverse, in general, would be intractable. At the outset 

of this study, we had set out to be able to respond to 

such a question, yet the RSM method won't answer it 

without engaging such methods perhaps as goal 

programming. It's worth noting that this question is 

one almost trivial to respond to—for the trained ANN 

model sitting on the worksheet behind Figure 6. For 

this, we twist it.

To answer now the process engineer's question such as 

“What time and temperature do I need to set on the 

process to get the yield of …?” one would proceed as 

follows.

Since at this stage the ANN is already trained, its input 

and output are now rigidly connected, mathematically 

and exactly, within the limitation of the training carried 

out and the linear algebraic equations, optimized 

weights, and activity functions incorporated in it. 

Hence, given some particular input value pair (time* 

and temperature*), the trained ANN would give 

exactly the same output (yield*) every time, except for 

degeneracy.  

Being connected end-to-end mathematically, the 

reverse relationship also holds: Given some valid 

target yield# and the trained ANN, we would be 

handed back the exact same or a valid process factor 

value pair (time#, temperature#) every time. 

Mathematically this input-output relationship is one-

to-one and onto, i.e., bijective, or it is surjective—for 

every element y in the codomain Y of f there is at least 

one element x in the domain X of f such that f(x) = y. It is 

not required that x be unique; the function f may map 

one or more elements of X to the same element of Y 

(Wikipedia, 2019). Thus, such an ANN is an amazing 

facility to help discover input conditions that would 

lead to some particular and specified yield number! 

Once the ANN is thoroughly trained, if some desired 

output (yield) is specified, the ANN—with the same 

training weights carefully preserved on the Microsoft 

Excel® worksheet—will be able to tell us the matching 

input conditions by reverse mapping. All we have to do 

is to briefly run the Microsoft Excel® Solver®'s GRG 

nonlinear optimizer in reverse on the trained ANN. 

Why are we doing this by ANN? Generally speaking, 

regression models such as (2) can't be easily solved 

backward—from target output values to their 

unknown matching inputs. Procedurally we would 

need to do as follows.
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The Microsoft Solver® dialog box must now set yield as 

the optimization objective, equated to the desired 

target value, with time and temperature entered as 

the decision variables in the dialog box whose 

optimum values will be searched by GRG using the 

trained ANN. (Be careful to enter valid constraints in 

the dialog for the search to work correctly!) Table 2 

displays some trials. The trained ANN can also 

generate the response surface to help the analyst 

visualize the input-response dependency. Figure 8 

shows this. This “reverse optimization capability” of a 

trained ANN is thus a rather clever exploit of neural 

nets and a huge time saver, even if we continue to 

loosely say that the ANN works like a black box and 

“never shows the equations” linking input to output.  

With a trained ANN or a deep learned network, you will 

neither need nor will ever know the "equations" 

linking input to output (Gershenson, 2018; Hornik, 

Tinchdombe and White, 1989; Kolhe and Bhise, 2019; 

Siddique et al., 2019). 

Note further that it is possible that such tracing back by 

Microsoft Solver® may lead to degenerate or multiple 

candidate answers, for end-to-end process paths may 

not always be unique (see the contours on the yield 

surface in Figure 8—many  time-temperature 

combinations would give identical yield). But such 

situations may be resolved by some secondary 

selection criteria such as expediency or cost, etc.

Table 2: The trained ANN's Reverse Predicting the required Control Variable settings, given desired yield 

targets, as obtained by authors

Required process settings discovered by ANN

 Yield desired Time Temperature

 76 79.009607 172.92076

 77 79.594144 174.151356

 78 80.395863 174.579339

 79 81.508053 174.735613

 Max 79.9709076 85.908794 176.45915

9.  Applicability and Limitations of Research, 

and Future Research Opportunities

This study has successfully demonstrated a most 

useful capability of a well-trained ANN—it can help 

locate or discover process conditions (inputs) to deliver 

a pre-specified response-on-target. This capability of 

neural nets generally goes unexploited, though a lot of 

historical process data with much training value 

languishes in storage in computer files in process 

plants. But such intrigues abound in the application of 

advanced manufacturing technologies such as EDM, 

CNC, and robotics, fabricating VLSI or memory chips, 

processing pharmaceuticals, or in alloy steel 

production. Much of this is currently attacked by 

exploratory plant trials or by designed experiments as 

necessitated.

Microsoft Excel® can frequently do a good job for 

building an ANN

Modelling physical phenomena has been a strongly 

desirable aspect of human intellectual pursuit—we 

want to understand and control the phenomena and 

systems around us—in order to live well. The tools that 

we have used have been qualitative, and wherever 

possible, quantitative. Sometimes the goal is to 

optimize the phenomena or processes in which we 

have an interest. We have employed logic, abstraction 

and math, and recently computing machinery— 

hardware and software—to expand our capabilities. 

The recent advent of artificial intelligence, the popular 

objet d'art being the neural net, has greatly enhanced 

this capability of ours, particularly in getting “almost as 

close to as we wish” to the true phenomenon with 
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conventional statistical experiments such as CCD. 

Neural nets, on the other hand, make very few 

assumptions about the input-output data collection 

procedure. Enough of the nonlinearities are often 

captured in lab or process plant logbooks, but they 

remain buried! For practical purpose, even randomly 

but widely spread data, or if possible, data collected in 

a grid-like manner, can suffice to help produce a decent 

prediction model. And one can bootstrap data for 

training (Paass, 1993). However, it would behove data 

scientists and statisticians to strategize this data 

collection process in order to produce networks with 

even higher predictive capability. 

This aspect we feel should be formally studied.

10.  Concluding Remarks

This study has successfully demonstrated a most 

useful capability of a well-trained ANN—it can help 

locate process conditions (inputs) to deliver a pre-

specified response-on-target. This capability of neural 

nets generally goes unexploited, though a lot of 

historical process data with much training value 

languishes in storage in computer files in process 

plants. But such requirements abound in the 

application of advanced manufacturing technologies 

such as EDM, CNC, and robotics, fabricating VLSI or 

memory chips, processing pharmaceuticals, or in alloy 

steel production. Much of this is currently probed by 

exploratory plant trials and direct experiments as 

necessitated.

To operating, engineering and R&D personnel, the 

ANN approach of process modelling offers an 

exceptional capability that is entirely possible to 

acquire and exploit—as shown in this paper—with 

access only to Microsoft Excel® and some carefully 

preserved historical process data logs or trials and 

experiments. Such data can serve as the golden 

repository of complex process knowhow—typically 

buried in records in the organization. The larger the 

amount of such historical process data, the better it 

would be able to catch the nuances of nonlinear input-

approaches such as deep learning.  Just look back at 

Figures 7 and 8. Thus, this has taken us where classical 

statistical modelling methods such as multiple 

regression so far could not. In our research, however, 

using only simple network architecture, we have 

demonstrated that ubiquitous tools such as Microsoft 

Excel® can take us a long way in this mission. We can 

build very effective and useful learning systems using 

Microsoft Excel® and its Solver® macro and produce 

predictive process models, even if we have only a 

limited understanding of the “theory inside.”  This 

work thus opens the door for plant engineers and R&D 

personnel to start using data from process or lab log 

books to model systems and processes quite 

effectively, for most of them now know and regularly 

use Microsoft Excel®.  

Reverse mapping the process from Output to Input is 

demonstrated

Additionally, we have demonstrated how with a 

trained neural network, one can effectively discover 

the required input (process or design variables) to give 

a desired target output. This is often a highly desirable 

aspect of process control and design work. We have 

shown here how such reverse mapping can be done 

with a trained artificial neural network very effectively.  

This is frequently a nearly impossible task, when only 

to go from input to output, one has to use a repertoire 

of complex theories and dependency relationships. 

This is a singular achievement of this study.

And we need new data collection strategies that go 

beyond designed experiments—to raise model 

fidelity

This, in fact, opens the door for considerable further 

research. In classical statistical modelling, in order to 

effectively build multiple regression models, one uses 

appropriately designed experiments (Montgomery 

2007; Box et al., 1978). However, beyond a point, such 

special experiments become burdensome to conduct, 

and ever theoretically limiting for the phenomena we 

wish to model and understand. So many of "reality" 

thus stay out of the data we would collect using 
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output dependencies in the process. This thus has the 

potential to materially raise the likelihood of superior 

R&D and effective process control and optimization at 

the plant level. This can also guide one to decide what 

the configuration of the next prototype design or 

process should be. Note that the entire exercise 

presented in this study utilized only 13 data points 

from Montgomery's CCD example. Still, planned 

statistical experiments for such knowledge acquisition 

is not always a precondition to produce valuable 

returns that a trained ANN can provide. Wisely spread 

random acquisition of input-output pairings in a 

relatively stable environment could often be enough 

to serve well for the net's training (see Cross Validated 

2019).

®SAS  (2016) has noted that machine learning can 

become an important part of the company's 

innovation strategy, for machine learning allows for 

data-driven solutions. By contrast, conventional 

approaches typically attempt analytical solutions to 

model processes, an action which slows down getting 

to answers quickly. Machine learning models are also 

able to shoulder more of the intellectual work that 

humans would do conventionally, allowing many 

decisions to be made more directly from observed 
®data. However, SAS  remarks that ANN and similar 

models must be managed and their performance 

continually monitored. Typically, such models have 

been trained on static temporal snapshots of data 

causing their predictions to become less accurate over 

time as conditions captured in the training data 

change. In this light, the prediction error rate needs to 

be monitored to check if it surpasses a predefined 

threshold on new data. These are rather useful 

pointers to heed, irrespective of the well-proven 

capability of ANNs to help comprehend situations 

where observations can easily be made, but rigorous 

analytical modelling is not feasible. 

To sum up, building a well-trained ANN model for 

systems involving nonlinear complex relationships 

certainly seems to hold a special promise for process 

control and optimization, as regression and RSM 

methods have done in the past. Machine intelligence 

already appears to be sufficiently matured to serve 

also as an important aid in analytics. Even without 

moving on to Deep Learning, a well-trained ANN 

developed using a representative sample of process 

input-output data, it therefore appears, can help a 

great deal as a stand-in model when nonlinear 

relationships are suspected among input and response 

variables in manufacturing and other enterprises.  Our 

work has illustrated this capability of artificial neural 

net models using only Microsoft Excel®. We 

successfully demonstrated effective reverse mapping 

from a desired target output to the corresponding 

input variable values, using the forward-trained ANN 

with its connection weights preserved—here on the 

Microsoft Excel® worksheet. With Microsoft Solver®'s 

capabilities available at hand, this did not require the 

reverse output → input training. And we did not 

anywhere invoke RSM, the classical process 

optimization method increasingly being contrasted 

with ANN (Patel and Brahmbhatt, 2016). Our only 

suggestion to the process engineer is for her to strive 

for the acquisition of representative training data to 

build the ANN, and not be restricted to experimental 

designs with low statistical resolution (Box et al., 

1978). For a variety of such reasons, use of ANN in 

manufacturing is rapidly growing. Instances may be 

now found in Huang and Zhang (1994), Serio, Facchini 

and Mummolo (2018), and many other emerging 

studies.
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conventional statistical experiments such as CCD. 

Neural nets, on the other hand, make very few 

assumptions about the input-output data collection 

procedure. Enough of the nonlinearities are often 

captured in lab or process plant logbooks, but they 

remain buried! For practical purpose, even randomly 

but widely spread data, or if possible, data collected in 

a grid-like manner, can suffice to help produce a decent 

prediction model. And one can bootstrap data for 

training (Paass, 1993). However, it would behove data 

scientists and statisticians to strategize this data 

collection process in order to produce networks with 

even higher predictive capability. 

This aspect we feel should be formally studied.

10.  Concluding Remarks

This study has successfully demonstrated a most 

useful capability of a well-trained ANN—it can help 

locate process conditions (inputs) to deliver a pre-

specified response-on-target. This capability of neural 

nets generally goes unexploited, though a lot of 

historical process data with much training value 

languishes in storage in computer files in process 

plants. But such requirements abound in the 

application of advanced manufacturing technologies 

such as EDM, CNC, and robotics, fabricating VLSI or 

memory chips, processing pharmaceuticals, or in alloy 

steel production. Much of this is currently probed by 

exploratory plant trials and direct experiments as 

necessitated.

To operating, engineering and R&D personnel, the 

ANN approach of process modelling offers an 

exceptional capability that is entirely possible to 

acquire and exploit—as shown in this paper—with 

access only to Microsoft Excel® and some carefully 

preserved historical process data logs or trials and 

experiments. Such data can serve as the golden 

repository of complex process knowhow—typically 

buried in records in the organization. The larger the 

amount of such historical process data, the better it 

would be able to catch the nuances of nonlinear input-

approaches such as deep learning.  Just look back at 

Figures 7 and 8. Thus, this has taken us where classical 

statistical modelling methods such as multiple 

regression so far could not. In our research, however, 

using only simple network architecture, we have 

demonstrated that ubiquitous tools such as Microsoft 

Excel® can take us a long way in this mission. We can 

build very effective and useful learning systems using 

Microsoft Excel® and its Solver® macro and produce 

predictive process models, even if we have only a 

limited understanding of the “theory inside.”  This 

work thus opens the door for plant engineers and R&D 

personnel to start using data from process or lab log 

books to model systems and processes quite 

effectively, for most of them now know and regularly 

use Microsoft Excel®.  

Reverse mapping the process from Output to Input is 

demonstrated

Additionally, we have demonstrated how with a 

trained neural network, one can effectively discover 

the required input (process or design variables) to give 

a desired target output. This is often a highly desirable 

aspect of process control and design work. We have 

shown here how such reverse mapping can be done 

with a trained artificial neural network very effectively.  

This is frequently a nearly impossible task, when only 

to go from input to output, one has to use a repertoire 

of complex theories and dependency relationships. 

This is a singular achievement of this study.

And we need new data collection strategies that go 

beyond designed experiments—to raise model 

fidelity

This, in fact, opens the door for considerable further 

research. In classical statistical modelling, in order to 

effectively build multiple regression models, one uses 

appropriately designed experiments (Montgomery 

2007; Box et al., 1978). However, beyond a point, such 

special experiments become burdensome to conduct, 

and ever theoretically limiting for the phenomena we 

wish to model and understand. So many of "reality" 

thus stay out of the data we would collect using 
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output dependencies in the process. This thus has the 

potential to materially raise the likelihood of superior 

R&D and effective process control and optimization at 

the plant level. This can also guide one to decide what 

the configuration of the next prototype design or 

process should be. Note that the entire exercise 

presented in this study utilized only 13 data points 

from Montgomery's CCD example. Still, planned 

statistical experiments for such knowledge acquisition 

is not always a precondition to produce valuable 

returns that a trained ANN can provide. Wisely spread 

random acquisition of input-output pairings in a 

relatively stable environment could often be enough 

to serve well for the net's training (see Cross Validated 

2019).

®SAS  (2016) has noted that machine learning can 

become an important part of the company's 

innovation strategy, for machine learning allows for 

data-driven solutions. By contrast, conventional 

approaches typically attempt analytical solutions to 

model processes, an action which slows down getting 

to answers quickly. Machine learning models are also 

able to shoulder more of the intellectual work that 

humans would do conventionally, allowing many 

decisions to be made more directly from observed 
®data. However, SAS  remarks that ANN and similar 

models must be managed and their performance 

continually monitored. Typically, such models have 

been trained on static temporal snapshots of data 

causing their predictions to become less accurate over 

time as conditions captured in the training data 

change. In this light, the prediction error rate needs to 

be monitored to check if it surpasses a predefined 

threshold on new data. These are rather useful 

pointers to heed, irrespective of the well-proven 

capability of ANNs to help comprehend situations 

where observations can easily be made, but rigorous 

analytical modelling is not feasible. 

To sum up, building a well-trained ANN model for 

systems involving nonlinear complex relationships 

certainly seems to hold a special promise for process 

control and optimization, as regression and RSM 

methods have done in the past. Machine intelligence 

already appears to be sufficiently matured to serve 

also as an important aid in analytics. Even without 

moving on to Deep Learning, a well-trained ANN 

developed using a representative sample of process 

input-output data, it therefore appears, can help a 

great deal as a stand-in model when nonlinear 

relationships are suspected among input and response 

variables in manufacturing and other enterprises.  Our 

work has illustrated this capability of artificial neural 

net models using only Microsoft Excel®. We 

successfully demonstrated effective reverse mapping 

from a desired target output to the corresponding 

input variable values, using the forward-trained ANN 

with its connection weights preserved—here on the 

Microsoft Excel® worksheet. With Microsoft Solver®'s 

capabilities available at hand, this did not require the 

reverse output → input training. And we did not 

anywhere invoke RSM, the classical process 

optimization method increasingly being contrasted 

with ANN (Patel and Brahmbhatt, 2016). Our only 

suggestion to the process engineer is for her to strive 

for the acquisition of representative training data to 

build the ANN, and not be restricted to experimental 

designs with low statistical resolution (Box et al., 

1978). For a variety of such reasons, use of ANN in 

manufacturing is rapidly growing. Instances may be 

now found in Huang and Zhang (1994), Serio, Facchini 

and Mummolo (2018), and many other emerging 

studies.
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Abstract

Smart cities are, in general, perceived to be high 

technology urban areas. They have been defined by 

many entities depending upon the business these 

entities are into. For example, organisations like IBM or 

Cisco talk about development of smart cities in terms 

of usage of Information and Communication 

Technology (ICT) to enhance the quality and 

performance of urban services such as energy, 

transportation and utilities in order to optimize costs 

and improve living standards. Smart Cities Council 

constituted by many organisations from US and 

Europe such as Alstom, GE, Microsoft, AT&T, etc. 

defines smart cities based on use of ICT for the 

enhancement of l iveabil ity,  workabil ity and 

sustainability. In the process, the basic fact that smart 

cities are perceived based on the state of development 

of a country and basic planning necessities have been 

completely ignored. The concept of smart cities varies 

from country to country and depends on the level of 

development and aspirations of citizens. 

One should not forget that the Urban Planning 

principles prevailing in a country have evolved through 

centuries. While applying the planning principles 

defined by such entities, the conventional town 

planning concepts may get overlooked.

While planning for smart cities in India, often culture 

and traditions are the controlling and guiding 

principles for planning. Greater importance should be 

given to social culture than to the technology aspect 

alone. However, in reality, ICT applications take on a 

greater role than cultural heritage and economic 

factors. Success of smart cities will be judged by their 

ability to transform the lives of citizens and reduce the 

growing inequality in society.

This paper highlights the need to achieve a balance 

between the conventional way of developing smart 

cities and using modern technology, thereby 

preserving their cultural and economic identities. 

Keywords: Smart city, urban planning, census of 

India, ICT
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